An MPI-CUDA Implementation and Optimization for Parallel Sparse Equations and Least Squares (LSQR)

نویسندگان

  • He Huang
  • Liqiang Wang
  • En-Jui Lee
  • Po Chen
چکیده

LSQR (Sparse Equations and Least Squares) is a widely used Krylov subspace method to solve large-scale linear systems in seismic tomography. This paper presents a parallel MPI-CUDA implementation for LSQR solver. On CUDA level, our contributions include: (1) utilize CUBLAS and CUSPARSE to compute major steps in LSQR; (2) optimize memory copy between host memory and device memory; (3) develop a CUDA kernel to perform transpose SpMV without transposing the matrix in memory or preserving additional copy. On MPI level, our contributions include: (1) decompose both matrix and vector to increase parallelism; (2) design a static load balancing strategy. In our experiment, the single GPU code achieves up to 17.6x speedup with 15.7 GFlops in single precision and 15.2x speedup with 12.0 GFlops in double precision compared with the original serial CPU code. The MPI-GPU code achieves up to 3.7x speedup with 268 GFlops in single precision and 3.8x speedup with 223 GFlops in double precision on 135 MPI tasks compared with the corresponding MPI-CPU code. The MPI-GPU code scales on both strong and weak scaling tests. In addition, our parallel implementations have better performance than the LSQR subroutine in PETSc library.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of Sparse Rectangular Systems Using Lsqr and Craig

We examine two iterative methods for solving rectangular systems of linear equations : LSQR for over-determined systems Ax ~ b, and Craig's method for under-determined systems Ax = b . By including regularization, we extend Craig's method to incompatible systems, and observe that it solves the same damped least-squares problems as LSQR. The methods may therefore be compared on rectangular syste...

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

Inexact trust region method for large sparse nonlinear least squares

The main purpose of this paper is to show that linear least squares methods based on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust region path. This property is a basis for an inexact trust region method which uses the LSQR algorithm for direction determination. This method is very efficient for large sparse nonlinear least squares as it is supported by numer...

متن کامل

A Scalable Parallel LSQR Algorithm for Solving Large-Scale Linear System for Tomographic Problems: A Case Study in Seismic Tomography

Least Squares with QR-factorization (LSQR) method is a widely used Krylov subspace algorithm to solve sparse rectangular linear systems for tomographic problems. Traditional parallel implementations of LSQR have the potential, depending on the non-zero structure of the matrix, to have significant communication cost. The communication cost can dramatically limit the scalability of the algorithm ...

متن کامل

Computing Projections with Lsqr*

LSQR uses the Golub-Kahan bidiagonalization process to solve sparse least-squares problems with and without regularization. In some cases, projections of the right-hand side vector are required, rather than the least-squares solution itself. We show that projections may be obtained from the bidiagonalization as linear combinations of (theoretically) orthogonal vectors. Even the least-squares so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012